Abstract
The field of Non-Road Mobile Machineries (NRMM) is now more than ever considering the adoption of electric systems to reduce the amount of pollutant emissions per unit of work. However, the intensity and complexity of the tasks performed by a working machine during its life is an obstacle to the widespread adoption of electric systems. Specific design solutions are required to properly split the power output of the hybrid powertrain among the different loads (wheel, power take off, hydraulic tools, etc.). In this work, a performance analysis between a traditional agricultural tractor and a proposed hybrid electric architecture of the same vehicle is shown. The comparison was performed on a set of tasks characterized on a real orchard tractor which were used to build the input signals of two different numerical models: one for the traditional diesel architecture and the other for the hybrid electric solution. The two models were tested with the same operating tasks to have a one to one comparison of the two architectures. Peak power capabilities of the hybrid solution and performance of the Load Observer energy management strategy were investigated to validate the feasibility of the proposed solution.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献