Research on Energy Management Strategy for Hybrid Tractors Based on DP-MPC

Author:

Zhao Yifan1,Xu Liyou12,Zhao Chenhui3,Xu Haigang4,Yan Xianghai12

Affiliation:

1. College of Vehicle and Traffic Engineering, Henan University of Science and Technology, Luoyang 471003, China

2. State Key Laboratory of Intelligent Agricultural Power Equipment, Luoyang 471039, China

3. YTO Belarus Technology Co., Ltd., Luoyang 471004, China

4. Shandong Shifeng (Group) Co., Ltd., Liaocheng 252800, China

Abstract

To further improve the fuel economy of hybrid tractors, an energy management strategy based on model predictive control (MPC) solved by dynamic programming (DP) is proposed, taking into account the various typical operating conditions of tractors. A coupled dynamics model was constructed for a series diesel–electric hybrid tractor under three typical working conditions: plowing, rotary tillage, and transportation. Using DP to solve for the globally optimal SOC change trajectory under each operating condition of the tractor as the SOC constraint for MPC, we designed an energy management strategy based on DP-MPC. Finally, a hardware-in-the-loop (HIL) test platform was built using components such as Matlab/Simulink, NI-Veristand, PowerCal, HIL test cabinet, and vehicle controller. The designed energy management strategy was then tested using the HIL test platform. The test results show that, compared with the energy management strategy based on power following, the DP-MPC-based energy management strategy reduces fuel consumption by approximately 7.97%, 13.06%, and 11.03%, respectively, under the three operating conditions of plowing, rotary tillage, and transportation. This achieves fuel-saving performances of approximately 91.34%, 94.87%, and 96.69% compared to global dynamic programming. The test results verify the effectiveness of the proposed strategy. This research can provide an important reference for the design of energy management strategies for hybrid tractors.

Funder

“14th Five-Year” National Key Research and Development Plan

Key Research and Development Project of Henan Province

Henan Province Natural Science Foundation

State Key Laboratory of Intelligent Agricultural Power Equipment Open Project

Henan University of Science and Technology Innovation Team Support Program

Publisher

MDPI AG

Reference48 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3