Electronic Tongue Coupled to an Electrochemical Flow Reactor for Emerging Organic Contaminants Real Time Monitoring

Author:

Magro CátiaORCID,Mateus Eduardo P.,Paz-Garcia Juan M.ORCID,Sério SusanaORCID,Raposo MariaORCID,Ribeiro Alexandra B.ORCID

Abstract

Triclosan, which is a bacteriostatic used in household items, has raised health concerns, because it might lead to antimicrobial resistance and endocrine disorders in organisms. The detection, identification, and monitoring of triclosan and its by-products (methyl triclosan, 2,4-Dichlorophenol and 2,4,6-Trichlorophenol) are a growing need in order to update current water treatments and enable the continuous supervision of the contamination plume. This work presents a customized electronic tongue prototype coupled to an electrochemical flow reactor, which aims to access the monitoring of triclosan and its derivative by-products in a real secondary effluent. An electronic tongue device, based on impedance measurements and polyethylenimine/poly(sodium 4-styrenesulfonate) layer-by-layer and TiO2, ZnO and TiO2/ZnO sputtering thin films, was developed and tested to track analyte degradation and allow for analyte detection and semi-quantification. A degradation pathway trend was observable by means of principal component analysis, being the sample separation, according to sampling time, explained by 77% the total variance in the first two components. A semi-quantitative electronic tongue was attained for triclosan and methyl-triclosan. For 2,4-Dichlorophenol and 2,4,6-Trichlorophenol, the best results were achieved with only a single sensor. Finally, working as multi-analyte quantification devices, the electronic tongues could provide information regarding the degradation kinetic and concentrations ranges in a dynamic removal treatment.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference39 articles.

1. World Population Prospects 2019 (ST/ESA/SER.A/423),2019

2. Sick Water ? The Central Role of Wastewater Management in Sustainable Development;Corcoran,2010

3. Non-regulated water contaminants: emerging research

4. Emerging pollutants in the environment: A challenge for water resource management

5. Electro-Fenton degradation of antimicrobials triclosan and triclocarban

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3