Attention-Based Temporal-Frequency Aggregation for Speaker Verification

Author:

Wang MengORCID,Feng Dazheng,Su Tingting,Chen Mohan

Abstract

Convolutional neural networks (CNNs) have significantly promoted the development of speaker verification (SV) systems because of their powerful deep feature learning capability. In CNN-based SV systems, utterance-level aggregation is an important component, and it compresses the frame-level features generated by the CNN frontend into an utterance-level representation. However, most of the existing aggregation methods aggregate the extracted features across time and cannot capture the speaker-dependent information contained in the frequency domain. To handle this problem, this paper proposes a novel attention-based frequency aggregation method, which focuses on the key frequency bands that provide more information for utterance-level representation. Meanwhile, two more effective temporal-frequency aggregation methods are proposed in combination with the existing temporal aggregation methods. The two proposed methods can capture the speaker-dependent information contained in both the time domain and frequency domain of frame-level features, thus improving the discriminability of speaker embedding. Besides, a powerful CNN-based SV system is developed and evaluated on the TIMIT and Voxceleb datasets. The experimental results indicate that the CNN-based SV system using the temporal-frequency aggregation method achieves a superior equal error rate of 5.96% on Voxceleb compared with the state-of-the-art baseline models.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3