ResSKNet-SSDP: Effective and Light End-To-End Architecture for Speaker Recognition

Author:

Deng Fei1,Deng Lihong1ORCID,Jiang Peifan1,Zhang Gexiang23,Yang Qiang3

Affiliation:

1. College of Computer Science and Cyber Security (Oxford Brookes College), Chengdu University of Technology, Chengdu 610059, China

2. Artificial Intelligence Research Center, Chengdu University of Technology, Chengdu 610059, China

3. School of Control Engineering, Chengdu University of Information Engineering, Chengdu 610059, China

Abstract

In speaker recognition tasks, convolutional neural network (CNN)-based approaches have shown significant success. Modeling the long-term contexts and efficiently aggregating the information are two challenges in speaker recognition, and they have a critical impact on system performance. Previous research has addressed these issues by introducing deeper, wider, and more complex network architectures and aggregation methods. However, it is difficult to significantly improve the performance with these approaches because they also have trouble fully utilizing global information, channel information, and time-frequency information. To address the above issues, we propose a lighter and more efficient CNN-based end-to-end speaker recognition architecture, ResSKNet-SSDP. ResSKNet-SSDP consists of a residual selective kernel network (ResSKNet) and self-attentive standard deviation pooling (SSDP). ResSKNet can capture long-term contexts, neighboring information, and global information, thus extracting a more informative frame-level. SSDP can capture short- and long-term changes in frame-level features, aggregating the variable-length frame-level features into fixed-length, more distinctive utterance-level features. Extensive comparison experiments were performed on two popular public speaker recognition datasets, Voxceleb and CN-Celeb, with current state-of-the-art speaker recognition systems and achieved the lowest EER/DCF of 2.33%/0.2298, 2.44%/0.2559, 4.10%/0.3502, and 12.28%/0.5051. Compared with the lightest x-vector, our designed ResSKNet-SSDP has 3.1 M fewer parameters and 31.6 ms less inference time, but 35.1% better performance. The results show that ResSKNet-SSDP significantly outperforms the current state-of-the-art speaker recognition architectures on all test sets and is an end-to-end architecture with fewer parameters and higher efficiency for applications in realistic situations. The ablation experiments further show that our proposed approaches also provide significant improvements over previous methods.

Funder

National Natural Science Foundation of China

Sichuan Science and Technology Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3