Development for Cooling Operations through a Model of Nanofluid Flow with Variable Heat Flux and Thermal Radiation

Author:

Alrehili Mohammed

Abstract

This article discusses the flow of a non-Newtonian Carreau nanoliquid across a stretching radiative nonlinear sheet that is exposed to a variable heat flux. Analysis is done with changing thermal conductivity since it affects how heat and mass transfer occur. Nanoparticles are modelled using the Brownian motion and the thermophoresis phenomenon. The introduction of a similar solution to our challenge, as obtained by our paper, received significant attention. To create a dimensionless system, the governing partial differential equations are subjected to the mathematical model’s convenient similarity transformations after it has been developed. The numerical solution of the coupled highly nonlinear ordinary differential equations characterizing velocity, temperature and nanoparticles concentration is shown using an effective shooting approach. Additionally, all factors affecting the situation that could increase the effectiveness of cooling operations will be looked into. Results for velocity, the thermal field, the concentration of nanoparticles, the skin-friction coefficient, and the local Nusselt and Sherwood numbers are provided and explored. Tables and graphics will be used to illustrate the paper’s conclusions. Results are also given in comparison to existing literature. Excellent agreement has been reached. Furthermore, it is clear that the local Sherwood number, the local Nusselt number, and the skin friction coefficient are all observed to increase as the power law index does.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3