Circular Economy and Virtual Reality in Advanced BIM-Based Prefabricated Construction

Author:

O’Grady Timothy M.ORCID,Brajkovich Nicholas,Minunno RobertoORCID,Chong Heap-Yih,Morrison Gregory M.ORCID

Abstract

This paper presents a new virtual reality (VR)-based approach to advanced learnings and experiences of the circular economy (CE) in the construction industry. The approach involves incorporating game design and a building information modelling (BIM) digital twin of a purposed CE prototype building. Our novel approach introduces VR environments designed to provide a visual representation of materials and components that can be reintroduced into the supply chain at the end of life and their removal procedures and material provenance. A case study methodology was applied to a purposely designed CE building, namely the Legacy Living Lab (L3). To reflect the real-life building, L3’s BIM model was combined with Unify game software to advance the literature in three key areas. First, the research investigates VR tools that will allow building designers to view and implement their strategies to advance CE design. Second, this research proposes an advanced VR tool to visualise the bill of quantities (BoQ) and material stock embedded in the studied building, further understanding concepts such as buildings as material banks. Finally, the proposed VR environment defines CE techniques implemented within the case study to be disseminated across the vast construction industry. This VR research identifies three key pillars in reducing the waste generated by the construction industry: education, documentation and visualisation. Furthermore, this paper provides a visual link between the BIM, BoQ and resiliency of the selected materials.

Funder

Australian Research Council

Western Australian Government Jobs, Tourism, Science and Innovation PhD Fellowship program

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3