Abstract
To unravel the permeability variation mechanism of weakly cemented rocks (WCR), the paper conducted triaxial permeability tests on weakly cemented sandstones (WCS) collected from the Jurassic formation in northwest China. The paper identified the correlation of WCS permeability versus porosity, cementation structure, and mineral composition, further developing a model to characterize the WCS stress–damage–permeability relationship. The research indicated that the WCS permeability was initially high due to the naturally high porosity, large pore diameter, and loose particle cementation, thus favoring a significant decline as pore convergence in the compaction stage. In the residual stage, kaolinite and montmorillonite minerals disintegrated into water and narrowed fractures, causing a slight permeability increase from the initial to the maximum and residual stages. The WCS matrix fracturing was phenomenologically accompanied by clay mineral disintegration. By assuming that the matrix can be compressed, jointed, and fractured, the paper defined a damage variable D and accordingly developed a stress–damage–permeability relationship model that incorporated matrix compression, jointing, and fracturing. The model can describe the WCS permeability regime regarding the high initial permeability and slight difference of the maximum and residual permeabilities versus the initial.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Jiangsu Funding Program for Excellent Postdoctoral Talent
Shanxi Province Unveils Bidding Project
Subject
General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献