Study on Permeability Evolution Law of Rock Mass under Mining Stress

Author:

Zhang Pengpeng1,Ji Xuan1,Li Yanheng123ORCID,Xu Mingjing1,Yao Bin1,Zhang Chenliang1ORCID

Affiliation:

1. School of Earth Science and Engineering, Hebei University of Engineering, Handan 056038, China

2. Key Laboratory of Resource Exploration Research of Hebei Province, Hebei Collaborative Innovation Center of Coal Exploitation, Hebei University of Engineering, Handan 056038, China

3. Hydrogeological Bureau of China National Administration of Coal Geology, Handan 056038, China

Abstract

In order to study the stress–strain–permeability coefficient relationship of overlying strata in a fractured zone after coal mining, taking the Changcun coal mine in the Changzhi basin as an example, the permeability evolution law of coarse sandstone, fine sandstone, siltstone and mudstone during a stress–strain process was analyzed through a triaxial compression permeability test. The generalized model of the rock mass permeability evolution process under mining stress was summarized, and then a coupling model of the stress–water pressure–permeability coefficient of fractured rock was established based on the continuum model of rock mass. The results showed that the maximum permeability coefficient of different coal overburden types was quite different, and the peak strength of the rock mass preceded the maximum permeability coefficient during the rock mass failure process; the permeability coefficient first decreased and then increased, reaching its maximum value after the peak stress, which occurred during the strain-softening stage; the generalized model of rock mass permeability included the compaction stage, elasticity stage, stable fracture stage, unstable fracture stage, macroscopic failure stage and residual strength stage.

Funder

Natural Science Foundation of Hebei

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3