A Data-Driven Approach to Trip Generation Modeling for Urban Residents and Non-local Travelers

Author:

Yang FanORCID,Li Linchao,Ding Fan,Tan Huachun,Ran Bin

Abstract

Trip generation modeling is essential in transportation planning activities. Previous modeling methods that depend on traditional data collection methods are inefficient and expensive. This paper proposed a novel data-driven trip generation modeling method for urban residents and non-local travelers utilizing location-based social network (LBSN) data and cellular phone data and conducted a case study in Nanjing, China. First, the point of interest (POI) data of the LBSN were classified into various categories by the service type, then, four features of each category including the number of users, number of POIs, number of check-ins, and number of photos were aggregated by traffic analysis zones to be used as explanatory variables for the trip generation models. We used a random tree regression method to select the most important features as the model inputs, and the trip models were established based on the ordinary least square model. Then, an exploratory approach was used to test the performance of each combination of the variables with various test methods to identify the best model for residents’ and travelers’ trip generation functions. The results suggest land use compositions have significant impact on trip generations, and the trip generation patterns are different between urban residents and non-local travelers.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3