Notopterol Ameliorates Hyperuricemia-Induced Cardiac Dysfunction in Mice

Author:

Wang Qian1,Peng Dewei1,Huang Bingyu1,Men Lintong1,Jiang Tao2ORCID,Huo Shengqi1,Wang Moran1,Guo Junyi1,Lv Jiagao1,Lin Li1

Affiliation:

1. Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China

2. Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

Notopterol is a naturally occurring furanocoumarin compound found in the root of Notopterygium incisum. Hyperuricemia involves the activation of chronic inflammation and leads to cardiac damage. Whether notopterol has cardioprotective potential in hyperuricemia mice remains elusive. The hyperuricemic mouse model was constructed by administration of potassium oxonate and adenine every other day for six weeks. Notopterol (20 mg/kg) and allopurinol (10 mg/kg) were given daily as treatment, respectively. The results showed that hyperuricemia dampened heart function and reduced exercise capacity. Notopterol treatment improved exercise capacity and alleviated cardiac dysfunction in hyperuricemic mice. P2X7R and pyroptosis signals were activated both in hyperuricemic mice and in uric acid-stimulated H9c2 cells. Additionally, it was verified that inhibition of P2X7R alleviated pyroptosis and inflammatory signals in uric acid-treated H9c2 cells. Notopterol administration significantly suppressed expression levels of pyroptosis associated proteins and P2X7R in vivo and in vitro. P2X7R overexpression abolished the inhibition effect of notopterol on pyroptosis. Collectively, our findings suggested that P2X7R played a critical role in uric acid-induced NLRP3 inflammatory signals. Notopterol inhibited pyroptosis via inhibiting the P2X7R/NLRP3 signaling pathway under uric acid stimulation. Notopterol might represent a potential therapeutic strategy against pyroptosis and improve cardiac function in hyperuricemic mice.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3