Ultrafast Modulation of Magnetization Dynamics in Ferromagnetic (Ga, Mn)As Thin Films
-
Published:2018-10-11
Issue:10
Volume:8
Page:1880
-
ISSN:2076-3417
-
Container-title:Applied Sciences
-
language:en
-
Short-container-title:Applied Sciences
Author:
Li Hang,Zhang Xinhui,Liu Xinyu,Dobrowolska Margaret,Furdyna Jacek
Abstract
Magnetization precession induced by linearly polarized optical excitation in ferromagnetic (Ga,Mn)As was studied by time-resolved magneto-optical Kerr effect measurements. The superposition of thermal and non-thermal effects arising from the laser pulses complicates the analysis of magnetization precession in terms of magnetic anisotropy fields. To obtain insight into these processes, we investigated compressively-strained thin (Ga,Mn)As films using ultrafast optical excitation above the band gap as a function of pulse intensity. Data analyses with the gyromagnetic calculation based on Landau-Lifshitz-Gilbert equation combined with two different magneto-optical effects shows the non-equivalent effects of in-plane and out-of-plane magnetic anisotropy fields on both the amplitude and the frequency of magnetization precession, thus providing a handle for separating the effects of non-thermal and thermal processes in this context. Our results show that the effect of photo-generated carriers on magnetic anisotropy constitutes a particularly effective mechanism for controlling both the frequency and amplitude of magnetization precession, thus suggesting the possibility of non-thermal manipulation of spin dynamics through pulsed laser excitations.
Funder
National Natural Science Foundation of China
National Science Foundation
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献