Author:
Ganesan Abiseka,Houtepen Arjan,Crisp Ryan
Abstract
From a niche field over 30 years ago, quantum dots (QDs) have developed into viable materials for many commercial optoelectronic devices. We discuss the advancements in Pb-based QD solar cells (QDSCs) from a viewpoint of the pathways an excited state can take when relaxing back to the ground state. Systematically understanding the fundamental processes occurring in QDs has led to improvements in solar cell efficiency from ~3% to over 13% in 8 years. We compile data from ~200 articles reporting functioning QDSCs to give an overview of the current limitations in the technology. We find that the open circuit voltage limits the device efficiency and propose some strategies for overcoming this limitation.
Funder
Stichting voor de Technische Wetenschappen
H2020 European Research Council
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献