Numerical Modeling of Hybrid Solar/Thermal Conversion Efficiency Enhanced by Metamaterial Light Scattering for Ultrathin PbS QDs-STPV Cell

Author:

Baitiche Oussama1ORCID,Bendelala Fathi1ORCID,Cheknane Ali1,Rabehi Abdelaziz23,Comini Elisabetta2ORCID

Affiliation:

1. Laboratoire Matériaux, Systèmes Énergétiques, Énergies Renouvelables et Gestion de l‘Énergie (LMSEERGE), Université Amar Telidji de Laghouat, Bd des Martyrs BP37G, Laghouat 03000, Algeria

2. SENSOR Laboratory, University of Brescia, Via D. Valotti 9, 25133 Brescia, Italy

3. Telecommunications and Smart Systems Laboratory, University of Djelfa, P.O. Box 3117, Djelfa 17000, Algeria

Abstract

Ultrathin cells are gaining popularity due to their lower weight, reduced cost, and enhanced flexibility. However, compared to bulk cells, light absorption in ultrathin cells is generally much lower. This study presents a numerical simulation of a metamaterial light management structure made of ultrathin lead sulfide colloidal quantum dots (PbS CQDs) sandwiched between a top ITO grating and a tungsten backing to develop an efficient hybrid solar/thermophotovoltaic cell (HSTPVC). The optical properties were computed using both the finite integration technique (FIT) and the finite element method (FEM). The absorptance enhancement was attributed to the excitations of magnetic polaritons (MP), surface plasmon polaritons (SPP), and lossy mode resonance (LMR). The HSTPVC with the metamaterial optical light management structure was assessed for short-circuit current density, open-circuit voltage, and conversion efficiency. The results show a conversion efficiency of 18.02% under AM 1.5 solar illumination and a maximum thermophotovoltaic conversion efficiency of 12.96% at TB = 1600 K. The HSTPVC can operate in a hybrid solar/thermal conversion state when the ITO grating is included by combining the advantages of QDs and metamaterials. This work highlights the potential for developing a new generation of hybrid STPV cells through theoretical modeling and numerical simulations.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3