Author:
Hossain Sakib Tanvir,Johra Fatima Tuz,Jung Woo-Gwang
Abstract
Around the world, silicon carbide (SiC) is used as a raw material in several engineering applications because of its various beneficial properties. Currently, though the Acheson method is one of the most emblematic to manufacture SiC, the direct carbonization of metallic silicon is simple and beneficial. In this reaction, silicon wafer cutting sludge can be used as an alternative silicon source material. The silicon wafer sludge contains silicon, ethylene glycol, cooling water, and a small amount of impurities. In this study, SiC was synthesized using silicon wafer sludge by a carbothermal process. In a typical experiment, the silicon sludge was mixed with carbon at different molar ratios. Then, the mixture was turned into pellets, which were placed in alumina crucibles and heat-treated at a temperature from 1400 °C to 1600 °C to fabricate SiC. To deduce the optimum condition for the synthesis of SiC, an investigation was carried out on the effects of different mixing ratios, temperatures, and heating times. To ensure sufficient carbonization, excess carbon was mixed, and the synthesized SiC was characterized by X-ray diffraction (XRD). Subsequently, purification of the synthesized SiC products by oxidation of excess carbon was performed. The removal of extra carbon could be confirmed by XRD and attenuated total reflectance (ATR) spectroscopy. This process can give basic information for the development of a technology to produce SiC using recycling Si wafer cutting sludge waste.
Funder
Korea Institute of Energy Technology Evaluation and Planning
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献