The Green Synthesis of Nanostructured Silicon Carbides (SiCs) from Sugarcane Bagasse Ash (SCBA) as Anodes in Lithium-Ion (Li-Ion) Batteries: A Review Paper

Author:

Pesulo Sandy U.1,September Lyle A.1ORCID,Kheswa Ntombizonke2,Seroka Ntalane S.13ORCID,Khotseng Lindiwe1ORCID

Affiliation:

1. Department of Chemistry, Faculty of Natural Sciences, University of the Western Cape, Robert Sobukwe Road, Private Bag X17, Bellville 7535, South Africa

2. NRF/iThemba LABS (Laboratory for Accelerator Based Sciences), Faure 7131, South Africa

3. Energy Centre, Smart Places Cluster, Council for Science and Industrial Research (CSIR), Pretoria 0001, South Africa

Abstract

Silicon is a promising anode material for the increased performance of lithium-ion batteries because of its high elemental composition and specific capacity. The application of silicon on a commercial scale is restricted due to the limitation of volume expansion. Silicon is also expensive, making it difficult for large-scale commercialisation. Different methods were used to address these issues, including a sintering process and the sol–gel method, to form silicon carbide (SiC), a hard chemical compound containing silicon and carbon. The silicon carbide anode not only acts as a buffer for volume expansion but also allows for better infiltration of the electrolyte, increasing charge and discharge capacity in the battery. Like silicon, silicon carbides can be costly. The development of renewable energy systems is very important, especially in the development of energy storage systems that are not only efficient but also cost-friendly. The cost of the energy storage devices is lowered, making them easily accessible. Silicon carbides can be synthesised from sugarcane, which is the fibrous waste that remains after juice extraction. This could be beneficial, as we could never run out of such a resource, and it offers low carbon with a high surface area. Silicon carbides can be synthesised by carbothermal reduction of silica from sugarcane bagasse. This review provides a comprehensive understanding of silicon carbides and synthetic processes. The innovative use of waste to synthesise materials would reduce costs and comply with Sustainable Development Goals (SDGs) 7 (affordable and clean energy) and 13 (climate action).

Funder

National Research Foundation

Eskom

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3