Biophysical Impact of Sunflower Crop Rotation on Agricultural Fields

Author:

Kussul NataliiaORCID,Deininger Klaus,Shumilo Leonid,Lavreniuk Mykola,Ali Daniel Ayalew,Nivievskyi Oleg

Abstract

Crop rotation is an important determining factor of crop productivity. Sustainable agriculture requires correct rules of crop rotation. Failure to comply with these rules can lead to deterioration of soil biochemical characteristics and land degradation. In Ukraine as well as in many other countries, sunflower monocropping is common practice and the impact of this fact should be studied to find the most precise rules to save the economic potential of land and minimize land degradation factors. This research provides an evaluation of the sunflower monocropping effect on the vegetation indices obtained from MODIS vegetation indices datasets for Ukraine as one of the countries with the biggest sunflower export in Europe. The crop rotation schemes are represented by their area proportions at the village level calculated based on the crop classification maps for 2016 to 2020. This representation gives the possibility to use regression models and f-test feature importance analysis to measure the impact of 3-year and 5-year crop rotation sequences. For these purposes, we use several models: a four-year binary representation model (model A1) and a model with all possible three-year crop rotation scheme representations (model B). These models gave the possibility to evaluate crop rotation schemes based on their biophysical impact on the next sunflower plantings and found that sunflower planting with an interval of three or more years is optimal in terms of the sustainability of soil fertility.

Funder

National Research Foundation of Ukraine

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3