Abstract
The objectives of this study were to assess actinobacterial diversity in five Moroccan extreme habitats and to evaluate their plant growth-promoting (PGP) activities. The soil samples were collected from different locations, including soils contaminated with heavy metals, from a high altitude site, from the desert, and from a marine environment. In total, 23 actinobacteria were isolated, 8 from Merzouga sand soil; 5 from Cannabis sativa rhizospheric soil; 5 from Toubkal mountain; 4 from a Draa sfar mining site; and 1 from marine soil. Based on their genotypic classification using 16S rRNA gene sequences, 19 of all belonged to the genus Streptomyces (82%) while the rest are the members of the genera Nocardioides (4.5%), Saccharomonospora (4.5%), Actinomadura (4.5%), and Prauserella (4.5%). Isolates Streptomyces sp. TNC-1 and Streptomyces sp. MNC-1 showed the highest level of phosphorus solubilization activity with 12.39 and 8.56 mg/mL, respectively. All 23 isolates were able to solubilize potassium, and 91% of them could grow under nitrogen-free conditions. The ability of the isolated actinobacteria to form indole-3-acetic acid (IAA) ranged from 6.70 to 75.54 μg/mL with Streptomyces sp. MNC-1 being the best IAA producer. In addition, all of the actinobacteria could produce siderophores, with Saccharomonospora sp. LNS-1 synthesizing the greatest amount (138.92 μg/mL). Principal coordinate analysis revealed that Streptomyces spp. MNC-1, MNT-1, MNB-2, and KNC-5; Saccharomonospora sp. LNS-1; and Nocardioides sp. KNC-3 each showed a variety of high-level plant growth-promoting activities. The extreme environments in Morocco are rich with bioactive actinobacteria that possess a variety of plant growth-promoting potentials that can further benefit green and sustainable agriculture.
Subject
Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology
Cited by
78 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献