Study the Mechanical Properties of Geopolymer under Different Curing Conditions

Author:

Liu Jinliang12,Shi Xiaohui1,Zhang Guanhua2,Li Linfei3ORCID

Affiliation:

1. School of Civil Engineering, Northeast Forestry University, Harbin 150040, China

2. Liaoning Communication Planning and Design Institute Co., Ltd., Shenyang 110121, China

3. Advanced Structures and Composites Center, University of Maine, Orono, ME 04469, USA

Abstract

The geopolymer is an environmentally friendly and high-performance material. Nowadays, how to improve the degree of the geopolymer’s reaction and enhance its mechanical properties has become a hot topic. This study used orthogonal tests to design the precursor mixing ratio, considering GGBS content (A), water/binder ratio (B), and alkaline activator modulus (C). The fly ash (FA) ground granulated blast furnace slag (GGBS)-based geopolymers were cured under two standard curing conditions: 40 °C under water and 40 °C in the oven. Then, the influence of these factors on the mechanical properties of geopolymers under different curing conditions was summarized. The contribution of each factor was ranked, which was used to find out the most sensitive factors affecting the mechanical properties. Taking the 7 days and 28 days of compressive strength and flexural strength of the geopolymer specimens as the evaluation criteria, the optimum ratio method for preparing geopolymers was obtained. Then, the prediction model of compressive strength under different curing conditions was established. SEM and XRD were used to analyze the microstructure and hydration products of the samples. The test results showed that the optimum ratio of FA-based geopolymers varied under different curing conditions. The GGBS content was the key factor in determining the mechanical properties. The heat curing condition was the best curing condition, the 28-day compressive strength could reach 76.3 MPa, and the 28-day flexural strength could reach 7.4 MPa. The prediction models established for compressive strength under different curing conditions had high accuracy. The specimens under the best curing conditions exhibited a dense internal microstructure and the presence of C-S-H gels, C-A-S-H gels, and N-A-S-H gels.

Funder

the Fundamental Research Funds for the Central Universities

Natural Science Foundation of Heilongjiang Province of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3