Spatiotemporal Interaction Residual Networks with Pseudo3D for Video Action Recognition

Author:

Chen Jianyu,Kong Jun,Sun Hui,Xu Hui,Liu Xiaoli,Lu Yinghua,Zheng CaixiaORCID

Abstract

Action recognition is a significant and challenging topic in the field of sensor and computer vision. Two-stream convolutional neural networks (CNNs) and 3D CNNs are two mainstream deep learning architectures for video action recognition. To combine them into one framework to further improve performance, we proposed a novel deep network, named the spatiotemporal interaction residual network with pseudo3D (STINP). The STINP possesses three advantages. First, the STINP consists of two branches constructed based on residual networks (ResNets) to simultaneously learn the spatial and temporal information of the video. Second, the STINP integrates the pseudo3D block into residual units for building the spatial branch, which ensures that the spatial branch can not only learn the appearance feature of the objects and scene in the video, but also capture the potential interaction information among the consecutive frames. Finally, the STINP adopts a simple but effective multiplication operation to fuse the spatial branch and temporal branch, which guarantees that the learned spatial and temporal representation can interact with each other during the entire process of training the STINP. Experiments were implemented on two classic action recognition datasets, UCF101 and HMDB51. The experimental results show that our proposed STINP can provide better performance for video recognition than other state-of-the-art algorithms.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference67 articles.

1. Rank Pooling for Action Recognition

2. Semantic human activity recognition: A literature review

3. Action Recognition and Prediction: A Survey Human;Kong;arXiv,2018

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3