A novel motion recognition method based on improved two-stream convolutional neural network and sparse feature fusion

Author:

Chen Chen1

Affiliation:

1. Sports Institute, Henan University of Technology Zhengzhou City, China

Abstract

Motion recognition is a hot topic in the field of computer vision. It is a challenging task. Motion recognition analysis is closely related to the network input, network structure and feature fusion. Due to the noise in the video, traditional methods cannot better obtain the feature information resulting in the problem of inaccurate motion recognition. Feature selection directly affects the efficiency of recognition, and there are still many problems to be solved in the multi-level feature fusion process. In this paper, we propose a novel motion recognition method based on an improved two-stream convolutional neural network and sparse feature fusion. In the low-rank space, because sparse features can effectively capture the information of motion objects in the video, meanwhile, we supplement the network input data, in view of the lack of information interaction in the network, we fuse the high-level semantic information and low-level detail information to recognize the motions by introducing attention mechanism, which makes the performance of the two-stream convolutional neural network have more advantages. Experimental results on UCF101 and HMDB51 data sets show that the proposed method can effectively improve the performance of motion recognition.

Publisher

National Library of Serbia

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3