Measuring Open Porosity of Porous Materials Using THz-TDS and an Index-Matching Medium

Author:

Naftaly MiraORCID,Tikhomirov Iliya,Hou PeterORCID,Markl Daniel

Abstract

The porosity of porous materials is a critical quality attribute of many products ranging from catalysis and separation technologies to porous paper and pharmaceutical tablets. The open porosity in particular, which reflects the pore space accessible from the surface, is crucial for applications where a fluid needs to access the pores in order to fulfil the functionality of the product. This study presents a methodology that uses terahertz time-domain spectroscopy (THz-TDS) coupled with an index-matching medium to measure the open porosity and analyze scattering losses of powder compacts. The open porosity can be evaluated without the knowledge of the refractive index of the fully dense material. This method is demonstrated for pellets compressed of pharmaceutical-grade lactose powder. Powder was compressed at four different pressures and measured by THz-TDS before and after they were soaked in an index-matching medium, i.e., paraffin. Determining the change in refractive index of the dry and soaked samples enabled the calculation of the open porosity. The results reveal that the open porosity is consistently lower than the total porosity and it decreases with increasing compression pressure. The scattering losses reduce significantly for the soaked samples and the scattering centers (particle and/or pore sizes) are of the order of or somewhat smaller than the terahertz wavelength. This new method facilitates the development of a better understanding of the links between material properties (particles size), pellet properties (open porosity) and performance-related properties, e.g., disintegration and dissolution performance of pharmaceutical tablets.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3