Technologies for Deep Biogas Purification and Use in Zero-Emission Fuel Cells Systems

Author:

Paglini Roberto,Gandiglio MartaORCID,Lanzini AndreaORCID

Abstract

A proper exploitation of biogas is key to recovering energy from biowaste in the framework of a circular economy and environmental sustainability of the energy sector. The main obstacle to widespread and efficient utilization of biogas is posed by some trace compounds (mainly sulfides and siloxanes), which can have a detrimental effect on downstream gas users (e.g., combustion engines, fuel cells, upgrading, and grid injection). Several purification technologies have been designed throughout the years. The following work reviews the main commercially available technologies along with the new concepts of cryogenic separation. This analysis aims to define a summary of the main technological aspects of the clean-up and upgrading technologies. Therefore, the work highlights which benefits and criticalities can emerge according to the intended final biogas application, and how they can be mitigated according to boundary conditions specific to the plant site (e.g., freshwater availability in WWTPs or energy recovery).

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference101 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3