Exergetic Analysis of DME Synthesis from CO2 and Renewable Hydrogen

Author:

De Falco MarcelloORCID,Natrella Gianluca,Capocelli MauroORCID,Popielak Paulina,Sołtysik Marcelina,Wawrzyńczak DariuszORCID,Majchrzak-Kucęba IzabelaORCID

Abstract

Carbon Capture and Utilization (CCU) is a viable solution to valorise the CO2 captured from industrial plants’ flue gas, thus avoiding emitting it and synthesizing products with high added value. On the other hand, using CO2 as a reactant in chemical processes is a challenging task, and a rigorous analysis of the performance is needed to evaluate the real impact of CCU technologies in terms of efficiency and environmental footprint. In this paper, the energetic performance of a DME and methanol synthesis process fed by 25% of the CO2 captured from a natural gas combined cycle (NGCC) power plant and by the green hydrogen produced through an electrolyser was evaluated. The remaining 75% of the CO2 was compressed and stored underground. The process was assessed by means of an exergetic analysis and compared to post-combustion Carbon Capture and Storage (CCS), where 100% of the CO2 captured was stored underground. Through the exergy analysis, the quality degradation of energy was quantified, and the sources of irreversibility were detected. The carbon-emitting source was a 189 MW Brayton–Joule power plant, which was mainly responsible for exergy destruction. The CCU configuration showed a higher exergy efficiency than the CCS, but higher exergy destruction per non-emitted carbon dioxide. In the DME/methanol production plant, the main contribution to exergy destruction was given by the distillation column separating the reactor outlet stream and, in particular, the top-stage condenser was found to be the component with the highest irreversibility (45% of the total). Additionally, the methanol/DME synthesis reactor destroyed a significant amount of exergy (24%). Globally, DME/methanol synthesis from CO2 and green hydrogen is feasible from an exergetic point of view, with 2.276 MJ of energy gained per 1 MJ of exergy destroyed.

Funder

Polish National Agency for Academic Exchange

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference55 articles.

1. CCU Technologies in the Green Economy

2. CO2 Recycling to Dimethyl Ether: State-of-the-Art and Perspectives

3. The Physical Science Basis. Contribution of Working Group I to the 552 Sixth Assessment Report of the Intergovernmental Panel on Climate Change;Masson-Delmotte,2021

4. A multi-scale framework for CO2 capture, utilization, and sequestration: CCUS and CCU

5. The CO2 economy: Review of CO2 capture and reuse technologies

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3