Assessing Exergy Efficiency in Computer-Aided Modeled Large-Scale Production of Chitosan Microbeads Modified with Thiourea and Magnetite Nanoparticles

Author:

Bertel-Pérez Forlin1,Cogollo-Cárcamo Grisel1,González-Delgado Ángel Darío1ORCID

Affiliation:

1. Nanomaterials and Computer Aided Process Engineering Research Group (NIPAC), Chemical Engineering Department, Universidad de Cartagena, Avenida del Consulado St. 30, Cartagena de Indias 130015, Colombia

Abstract

Chitosan, the deacetylated derivative of chitin, is a biopolymer with many applications in different sectors, such as pharmaceutical, food, and wastewater treatment, amongst others. It can be used as a source for synthesizing bioadsorbents modified with chelators and nanoparticles for the removal of pollutants. In this report, we conducted an exergy analysis to evaluate the large-scale production of chitosan-based bioadsorbents modified with iron nanoparticles and chelators. The objective was to identify energy inefficiencies and propose technological enhancements to improve energy utilization. The process was simulated using Aspen Plus V.10® software, enabling the quantification of chemical and physical exergies for the species and streams involved. We calculated process irreversibilities, exergy losses, waste exergy, and utility exergy flows for each stage and the overall process. These findings provide valuable insights into optimizing energy utilization in the production of chitosan-based bioadsorbents. The overall exergy efficiency was 4.98%, with the washing and drying stages of nanoparticles and adsorbent synthesis accounting for the largest contribution to process irreversibilities and exergy destruction. To increase the global exergy efficiency of the process, it is proposed to implement process improvement strategies, such as mass or energy integration, to obtain better energy performance.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3