Investigation on the Fracture-Pore Evolution and Percolation Characteristics of Oil Shale under Different Temperatures

Author:

Tang HaiboORCID,Zhao Yangsheng,Kang Zhiqin,Lv Zhaoxing,Yang DongORCID,Wang Kun

Abstract

It is well known that underground in situ pyrolysis technology for oil shale production is a promising field. In the in situ modification mining process, the permeability property of a shale matrix has a great effect on the transport capacity of pyrolytic products. For oil shale undergoing pyrolysis, the changes of internal structure (fracture and pore space) have a considerable influence on the permeability network which further affects the migration of hydrocarbon products. In this study, based on an oil shale retorting experiment performed under different temperatures (20 °C, 100 °C, 200 °C, 300 °C, 325 °C, 350 °C, 375 °C, 400 °C, 425 °C, 450 °C, 475 °C, 500 °C, 525 °C, 550 °C, 575 °C, 600 °C), an investigation on the distribution characteristics of the fractures was conducted using micro-CT technology. Meanwhile, mercury injection porosimetry was used to characterize the pore structure of the oil shale samples under different temperatures. Finally, a fracture-pore dual medium model was constructed to calculate the percolation probability to quantitatively describe the permeability variation of oil shale with temperature. The test results indicated that the higher the temperature, the larger were the pore spaces. The increase in pore volume due to pyrolysis temperatures mainly affected the pores ranging from 10 nm to 100 nm and occurred in the specific temperature range (400 °C to 425 °C). Additionally, CT images show that the fracture morphology varied with increasing temperature and the number and length of fractures at different temperatures were in great accordance with the fractal law statistically. On the other hand, simulation of the percolation probabilities discovered that in a single pore media model over the whole range of tested temperatures they were too low to exceed the threshold. In contrast, in the dual medium model, the theoretical threshold of 31.16% was exceeded when the temperature reached 350 °C. Moreover, the results demonstrated that fractures dominated the seepage channel and had more significant effects on the permeability of oil shale. What has been done in this study will provide some guidance for the in situ fluidization mining of oil shale.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3