A Study on the Permeability and Damage Characteristics of Limestone under Stress–Seepage Coupling Conditions

Author:

Wang Lu12ORCID,Liu Jianfeng2,Liao Yilin2,Yang Shuyu1,He An1,Xu Huining2

Affiliation:

1. School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, China

2. College of Water Resources and Hydropower, Sichuan University, Chengdu 610065, China

Abstract

With the increase in energy demand, energy engineering has gradually developed to go deeper, accompanied by a complex geological environment, such as the coupling of stress and seepage. Limestone is widely found in underground rock engineering, and its stress–seepage coupling characteristics have a great influence on the safety and stability of related engineering projects. In order to study the permeability characteristics and damage evolution of limestone during the deformation and failure process under stress–seepage coupling conditions, permeability and acoustic emission tests on limestone were performed in this paper. The results showed that: the stress–strain curve demonstrated periodicity, as did the permeability change. The change in permeability in different deformation stages of axial strain and lateral strain was similar, but it was more appropriate to reflect the permeability evolution in terms of lateral strain. The permeability of the limestone slightly decreased in the volumetric compression stage, and tended to saturate after a sudden increase in the expansion stage. The presence of the confining pressure reduced the permeability of the rock. In the process of limestone deformation and failure, the level of acoustic emission activity can reflect the degree of fracture development. The permeability characteristics and acoustic emission characteristics had a good corresponding relationship. The greater the confining pressure, the higher the acoustic emission activity. The deformation and damage process of limestone experienced three stages: damage stable growth, damage acceleration development, and damage saturation.

Funder

National Natural Science Foundation of China

Key Project of Research and Development Plan in Sichuan Province

National Scientific Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference42 articles.

1. Permeability characteristics of fractured rock mass: A case study of the Dongjiahe coal mine;Ma;Geomat. Nat. Haz. Risk.,2020

2. Experimental study on permeability characteristics of red sandstone under cyclic seepage pressures;Zhang;Chin. J. Geotech. Eng.,2015

3. Reply to discussion on ‘Review of groundwater flow and contaminant transport modelling approaches for the Sherwood Sandstone aquifer, UK; insights from analogous successions worldwide’ by Medici and West (QJEGH, 55, qjegh2021-176);Medici;Q. J. Eng. Geol. Hydrogen,2023

4. Experimental study on the seepage characteristics of red sandstone with different confining pressures and different damage degrees;Zhang;Chin. J. Rock Mech. Eng.,2020

5. Laboratory testing of coupled hydro-mechanical processes during rock deformation;Heiland;Hydrogeol. J.,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3