Study of Pressure Retarded Osmosis Process in Hollow Fiber Membrane: Cylindrical Model for Description of Energy Production

Author:

Nagy EndreORCID,Ibrar Ibrar,Braytee Ali,Iván BélaORCID

Abstract

A new mathematical model was developed to predict the cylindrical effect of the membrane performance in the pressure retarded osmosis process. The cylindrical membrane transport layers (the draw side boundary and the porous membrane) were divided into very thin sublayers with constant mass transport parameters, among others with a constant radius in every sublayer. The obtained second-order differential mass balance equations were solved analytically, with constant parameters written for every sublayer. The algebraic equation system involving 2N equations was then solved for the determinant solution. It was shown that the membrane properties, water permeability (A), salt permeability (B), structural parameter (S) and the operating conditions (inlet draw side solute concentration and draw side mass transfer coefficient) affect the water flux strongly, and thus the membrane performance, due to the cylindrical effect caused by the variable surface and volume of the sublayers. This effect significantly depends on the lumen radius. The lower radius means a larger change in the internal surface/volume of sublayers with ΔR thickness. The predicted results correspond to that of the flat-sheet membrane layer at ro = 10,000 μm. At the end of this manuscript, the calculated mass transfer rates were compared to those measured. It was stated that the curvature effect in using a capillary membrane must not be left out of consideration when applying hollow fiber membrane modules due to their relatively low lumen radius. The presented model provides more precise prediction of the performance in the case of hollow fiber membranes.

Funder

Hungaryan National Development Agency grants

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3