Abstract
In recent years, local energy markets (LEMs) have been introduced to empower end-customers within energy communities at the distribution level of the power system, in order to be able to trade their energy locally in a competitive and fair environment. However, there is still some challenge with regard to the most efficient approach in organising the LEMs for the electricity exchange between consumers and prosumers while ensuring that they are responsible for their electricity-related choices, and concerning which LEM model is suitable for which prosumer or consumer type. This paper presents a hierarchical model for the organisation of agent-based local energy markets. According to the proposed model, prosumers and consumers are enabled to transact electricity within the local energy community and with the grid in a coordinated manner to ensure technical and economic benefits for the LEM’s agents. The model is implemented in a software tool called Grid Singularity Exchange (GSyE), and it is verified in a real German energy community case study. The simulation results demonstrate that trading electricity within the LEM offers economic and technical benefits compared to transacting with the up-stream grid. This can further lead to the decarbonization of the power system sector. Furthermore, we propose two models for LEMs consisting of multi-layer and single-layer hierarchical agent-based structures. According to our study, the multi-layer hierarchical model is more profitable for household prosumers as compared to trading within the single-layer hierarchical LEM. However, the single-layer LEM is more be beneficial for industrial prosumers.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献