Design and evaluation of architectural framework for a secured local energy market model based on distributed ledger technologies

Author:

Okwuibe Godwin C.12ORCID,Brenner Thomas2,Yahya Muhammad2,Tzscheutschler Peter1,Hamacher Thomas1

Affiliation:

1. School of Engineering and Design Technical University of Munich Munich Germany

2. OLI Systems GmbH Harthausen Germany

Abstract

AbstractBlockchain‐based local energy markets have been proposed in recent years to provide a market platform for local prosumers and consumers to exchange their energy in a secured, transparent and tamper‐proof manner. However, there are still some challenges regarding the scalability of blockchain to handle high computational models/algorithms/contracts as this may result in the extension of the block size of the blockchain network and very high gas costs. Also, there is still the problem of transparency as regards General Data Protection Regulation because the full visibility of data in the blockchain may collide with privacy in some settings. A framework is presented that combines the on‐chain features of blockchain with trusted execution environments to develop a transparent, tamper‐resistant, low operation cost, scalable and resilient hybrid model architecture for local electricity trading. The model architecture was simulated in German community case scenarios for a varying number of prosumers and consumers to show its applicability. The simulation results show that the model was able to solve the scalability problem of blockchain for the local energy market application as the market model is run in a trusted environment where the integrity of the model can be verified by the participants.

Funder

Bundesministerium für Wirtschaft und Energie

Publisher

Institution of Engineering and Technology (IET)

Subject

Energy Engineering and Power Technology,Engineering (miscellaneous),Renewable Energy, Sustainability and the Environment,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3