Forecasting Regional Carbon Prices in China Based on Secondary Decomposition and a Hybrid Kernel-Based Extreme Learning Machine

Author:

Cheng Yunhe,Hu Beibei

Abstract

Accurately forecasting carbon prices is key to managing associated risks in the financial market for carbon. To this end, the traditional strategy does not adequately decompose carbon prices, and the kernel extreme learning machine (KELM) with a single kernel function struggles to adapt to the nonlinearity, nonstationarity, and multiple frequencies of regional carbon prices in China. This study constructs a model, called the VMD-ICEEMDAN-RE-SSA-HKELM model, to forecast regional carbon prices in China based on the idea of ‘decomposition–reconstruction–integration’. The VMD is first used to decompose carbon prices and the ICEEMDAN is then used to decompose the residual term that contains complex information. To reduce the systematic error caused by increases in the mode components of carbon price, range entropy (RE) is used to reconstruct the results of its secondary decomposition. Following this, HKELM is optimized by the sparrow search algorithm and used to forecast each subseries of carbon prices. Finally, predictions of the price of carbon are obtained by linearly superimposing the results of the forecasts of each of its subseries. The results of experiments show that the secondary decomposition strategy proposed in this paper is superior to the traditional decomposition strategy, and the proposed model for forecasting carbon prices has significant advantages over a considered reference group of models.

Funder

the National Social Science Fund to study and explain the spirit of the Fourth Plenary Session of the 19th CPC Central Committee

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3