A carbon price ensemble prediction model based on secondary decomposition strategies and bidirectional long short‐term memory neural network by an improved particle swarm optimization

Author:

Zou Shaohui1,Zhang Jing1ORCID

Affiliation:

1. School of Management Xi'an University of Science and Technology Xi'an China

Abstract

AbstractTo further enhance the precision of carbon trading price forecasting, this research proposes a combined forecasting model, CEEMDAN–VMD–IPSO–BiLSTM, considering the unsatisfactory high‐frequency sequence decomposition and the reliance on unidirectional neural networks in current carbon price‐prediction models. First of all, the original sequence of carbon prices is decomposed into multiple independent subsequences through the completely ensemble empirical mode decomposition with adaptive noise (CEEMDAN) technique. The sample entropy values of each subsequence are calculated to reconstruct them as high‐frequency, low‐frequency, and trend sequences. Second, we employ the variational mode decomposition (VMD) approach to decompose the high‐frequency series. The obtained subsequences, along with the low‐frequency and trend sequences, are separately input into an improved particle swarm optimization (IPSO) optimized bidirectional long short‐term memory neural network (BiLSTM) model for forecasting. Finally, an IPSO–BiLSTM model is used to integrate the forecasting outcomes from the previous step, yielding the ultimate results for predicting carbon prices. The case studies reveal that compared with the benchmark model, this model exhibits superior predictive precision and universality. It offers theoretical support for optimizing carbon market operations and fostering low‐carbon economic growth, holding practical importance.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3