Classification of Soybean Genotypes Assessed Under Different Water Availability and at Different Phenological Stages Using Leaf-Based Hyperspectral Reflectance

Author:

Crusiol  Luis Guilherme Teixeira,Nanni Marcos RafaelORCID,Furlanetto Renato Herrig,Sibaldelli Rubson Natal RibeiroORCID,Cezar Everson,Sun Liang,Foloni José Salvador Simonetto,Mertz-Henning Liliane Marcia,Nepomuceno Alexandre Lima,Neumaier Norman,Farias José Renato Bouças

Abstract

Monitoring of soybean genotypes is important because of intellectual property over seed technology, better management over seed genetics, and more efficient strategies for its agricultural production process. This paper aims at spectrally classifying soybean genotypes submitted to diverse water availability levels at different phenological stages using leaf-based hyperspectral reflectance. Leaf reflectance spectra were collected using a hyperspectral proximal sensor. Two experiments were conducted as field trials: one experiment was at Embrapa Soja in the 2016/2017, 2017/2018, and 2018/2019 cropping seasons, where ten soybean genotypes were grown under four water conditions; and another experiment was in the experimental farm of Unoeste University in the 2018/2019 cropping season, where nine soybean genotypes were evaluated. The spectral data collected was divided into nine spectral datasets, comprising single and multiple cropping seasons (from 2016 to 2019), and two contrasting crop-growing environments. Principal component analysis, applied as an indicator of the explained variance of the reflectance spectra among genotypes within each spectral dataset, explained over 94% of the spectral variance in the first three principal components. Linear discriminant analysis, used to obtain a model of classification of each reflectance spectra of soybean leaves into each soybean genotype, achieved accuracy between 61% and 100% in the calibration procedure and between 50% and 100% in the validation procedure. Misclassification was observed only between genotypes from the same genetic background. The results demonstrated the great potential of the spectral classification of soybean genotypes at leaf-scale, regardless of the phenological stages or water status to which plants were submitted.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3