Hyperspectral Data for Early Identification and Classification of Potassium Deficiency in Soybean Plants (Glycine max (L.) Merrill)

Author:

Furlanetto Renato Herrig1,Crusiol Luís Guilherme Teixeira2,Nanni Marcos Rafael1ORCID,de Oliveira Junior Adilson2,Sibaldelli Rubson Natal Ribeiro2ORCID

Affiliation:

1. Remote Sensing and Geoprocessing Laboratory, Department of Agronomy, Maringá State University, Maringá 87020-900, Brazil

2. Embrapa Soja, National Soybean Research Centre, Brazilian Agricultural Research Corporation, Londrina 86085-981, Brazil

Abstract

Identifying potassium (K+) deficiency in plants has traditionally been a difficult and expensive process. Traditional methods involve inspecting leaves for symptoms and conducting a laboratory analysis. These methods are not only time-consuming but also use toxic reagents. Additionally, the analysis is performed during the reproductive stage of growth, which does not allow enough time for corrective fertilization. Moreover, soybean growers do not have other tools to analyze the nutrition status during the earlier stages of development. Thus, this study proposes a quick approach for monitoring K+ in soybean crops using hyperspectral data through principal component analysis (PCA) and linear discriminant analysis (LDA) with a wavelength selection algorithm. The experiment was carried out at the Brazilian National Soybean Research Center in the 2017–2018, 2018–2019, and 2019–2020 soybean crop seasons, at the stages of development V4–V5, R1–R2, R3–R4, and R5.1–R5.3. Three treatments were evaluated that varied in K+ availability: severe potassium deficiency (SPD), moderate potassium deficiency (MPD), and an adequate supply of potassium (ASP). Spectral data were collected using an ASD Fieldspec 3 Jr. hyperspectral sensor. The results showed a variation in the leaf spectral signature based on the K+ availability, with SPD having higher reflectance in the visible region due to a lower concentration of pigments. PCA explained 100% of the variance across all stages and seasons, making it possible to distinguish SPD at an early development stage. LDA showed over 70% and 59% classification accuracies for discriminating a K+ deficiency in the simulation and validation stages. This study demonstrates the potential of the method as a rapid nondestructive and accurate tool for identifying K+ deficiency in soybean leaves.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3