Sub-Daily Natural CO2 Flux Simulation Based on Satellite Data: Diurnal and Seasonal Pattern Comparisons to Anthropogenic CO2 Emissions in the Greater Tokyo Area

Author:

Wang Qiao,Imasu Ryoichi,Arai Yutaka,Ito Satoshi,Mizoguchi YasukoORCID,Kondo Hiroaki,Xiao JingfengORCID

Abstract

During the last decade, advances in the remote sensing of greenhouse gas (GHG) concentrations by the Greenhouse Gases Observing SATellite-1 (GOSAT-1), GOSAT-2, and Orbiting Carbon Observatory-2 (OCO-2) have produced finer-resolution atmospheric carbon dioxide (CO2) datasets. These data are applicable for a top-down approach towards the verification of anthropogenic CO2 emissions from megacities and updating of the inventory. However, great uncertainties regarding natural CO2 flux estimates remain when back-casting CO2 emissions from concentration data, making accurate disaggregation of urban CO2 sources difficult. For this study, we used Moderate Resolution Imaging Spectroradiometer (MODIS) land products, meso-scale meteorological data, SoilGrids250 m soil profile data, and sub-daily soil moisture datasets to calculate hourly photosynthetic CO2 uptake and biogenic CO2 emissions with 500 m resolution for the Kantō Plain, Japan, at the center of which is the Tokyo metropolis. Our hourly integrated modeling results obtained for the period 2010–2018 suggest that, collectively, the vegetated land within the Greater Tokyo Area served as a daytime carbon sink year-round, where the hourly integrated net atmospheric CO2 removal was up to 14.15 ± 4.24% of hourly integrated anthropogenic emissions in winter and up to 55.42 ± 10.39% in summer. At night, plants and soil in the Greater Tokyo Area were natural carbon sources, with hourly integrated biogenic CO2 emissions equivalent to 2.27 ± 0.11%–4.97 ± 1.17% of the anthropogenic emissions in winter and 13.71 ± 2.44%–23.62 ± 3.13% in summer. Between January and July, the hourly integrated biogenic CO2 emissions of the Greater Tokyo Area increased sixfold, whereas the amplitude of the midday hourly integrated photosynthetic CO2 uptake was enhanced by nearly five times and could offset up to 79.04 ± 12.31% of the hourly integrated anthropogenic CO2 emissions in summer. The gridded hourly photosynthetic CO2 uptake and biogenic respiration estimates not only provide reference data for the estimation of total natural CO2 removal in our study area, but also supply prior input values for the disaggregation of anthropogenic CO2 emissions and biogenic CO2 fluxes when applying top-down approaches to update the megacity’s CO2 emissions inventory. The latter contribution allows unprecedented amounts of GOSAT and ground measurement data regarding CO2 concentration to be analyzed in inverse modeling of anthropogenic CO2 emissions from Tokyo and the Kantō Plain.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference175 articles.

1. The state of greenhouse gases in the atmosphere based on global observations through 2018,2019

2. Global Carbon Budget 2019

3. An integrated global greenhouse gas information system (IG3IS);De Cola;WMO Bull.,2017

4. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420),2019

5. Carbon stored in human settlements: the conterminous United States

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3