Remote Sensing Indices for Spatial Monitoring of Agricultural Drought in South Asian Countries

Author:

Shahzaman MuhammadORCID,Zhu Weijun,Bilal MuhammadORCID,Habtemicheal Birhanu Asmerom,Mustafa FarhanORCID,Arshad Muhammad,Ullah IrfanORCID,Ishfaq Shazia,Iqbal Rashid

Abstract

Drought is an intricate atmospheric phenomenon with the greatest impacts on food security and agriculture in South Asia. Timely and appropriate forecasting of drought is vital in reducing its negative impacts. This study intended to explore the performance of the evaporative stress index (ESI), vegetation health index (VHI), enhanced vegetation index (EVI), and standardized anomaly index (SAI) based on satellite remote sensing data from 2002–2019 for agricultural drought assessment in Afghanistan, Pakistan, India, and Bangladesh. The spatial maps were generated against each index, which indicated a severe agricultural drought during the year 2002, compared to the other years. The results showed that the southeast region of Pakistan, and the north, northwest, and southwest regions of India and Afghanistan were significantly affected by drought. However, Bangladesh faced substantial drought in the northeast and northwest regions during the drought year (2002). The longest drought period of seven months was observed in India followed by Pakistan and Afghanistan with six months, while, only three months were perceived in Bangladesh. The correlation between drought indices and climate variables such as soil moisture has remained a significant drought-initiating variable. Furthermore, this study confirmed that the evaporative stress index (ESI) is a good agricultural drought indicator, being quick and with greater sensitivity, and thus advantageous compared to the VHI, EVI, and SAI vegetation indices.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3