Monitoring Extreme Agricultural Drought over the Horn of Africa (HOA) Using Remote Sensing Measurements

Author:

Qu Carolyn,Hao Xianjun,Qu John J.

Abstract

The Horn of Africa ((HOA), including Djibouti, Eritrea, Ethiopia, and Somalia) has been slammed by extreme drought within the past years, and has become one of the most food-insecure regions in the world. Millions of people in the HOA are undernourished and are at risk of famine. Meanwhile, global climate change continues to cause more extreme weather and climate events, such as drought and heat waves, which have significant impacts on crop production and food security. This study aimed to investigate extreme drought in the Horn of Africa region, using satellite remote sensing data products from the Moderate Resolution Imaging Spectroradiometer (MODIS), a key instrument onboard the National Aeronautics and Space Administration (NASA) satellites Terra and Aqua, as well as Tropical Rainfall Measuring Mission (TRMM) precipitation data products. Normalized Difference Vegetation Index (NDVI), Vegetation Condition Index (VCI), Temperature Condition Index (TCI), and Vegetation Health Index (VHI) data from 2000 to 2017 were derived from the MODIS measurements and analyzed for assessments of the temporal trend of vegetation health and the impacts of extreme drought events. The results demonstrated the severity of vegetation stress and extreme drought during the past decades. From 1998 to 2017, monthly precipitation over major crop growth seasons decreased significantly. From 2001 to 2017, the mean VHI anomaly of HOA cropland decreased significantly, at a trend of −0.2364 ± 0.1446/year, and the mean TCI anomaly decreased at a trend of −0.2315 ± 0.2009/year. This indicated a deterioration of cropland due to drought conditions in the HOA. During most of the crop growth seasons in 2015 and 2016, the VHI values were below the 10-year (2001–2010) average: This was caused by extreme drought during the 2015–2016 El Niño event, one of the strongest El Niño events in recorded history. In addition, monthly VHI anomalies demonstrated a high correlation with monthly rainfall anomalies in July and August (the growth season of major crops in the HOA), and the trough points of the monthly rainfall and VHI anomaly time series of July and August were consistent with the timing of drought events and El Niño events.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference41 articles.

1. UN Aid Chief Urges Global Action as Starvation, Famine Loom for 20 Million across Four Countries https://news.un.org/en/story/2017/03/553152-un-aid-chief-urges-global-action-starvation-famine-loom-20-million-across-four#.WbVBQ9GQxdh

2. Towards operational monitoring of terrestrial systems by moderate-resolution remote sensing

3. Red and photographic infrared linear combinations for monitoring vegetation

4. Historical perspective of AVHRR NDVI and vegetation drought monitoring;Anyamba,2012

5. Application of vegetation index and brightness temperature for drought detection

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3