Affiliation:
1. School of Electrical Engineering, Guangxi University, Nanning 530004, China
2. Key Laboratcry of AI and Information Processing (Hechi University), Education Department of Guangxi Zhuang Autonomous Region, Hechi 546300, China
3. School of Computing, University of Portsmouth, Portsmouth PO1 3HE, UK
Abstract
Unmanned surface vehicle (USV)-based floating-waste detection presents significant challenges. Due to the water surface’s high reflectivity, there are often light spots and reflections in images captured by USVs. Furthermore, floating waste often consists of numerous small objects that prove difficult to detect, posing a robustness challenge for object-detection networks. To address these issues, we introduce a new dataset collected by USV, FloatingWaste-I, which accounts for the effects of light in various weather conditions, including sunny, cloudy, rainy and nighttime scenarios. This dataset comprises two types of waste: bottles and cartons. We also propose the innovative floating-waste-detection network, YOLO-Float, which incorporates a low-level representation-enhancement module and an attentional-fusion module. The former boosts the network’s low-level representation capability while the latter fuses the highest- and lowest-resolution feature map to improve the model robustness. We evaluated our method by using both the public dataset FloW-img and our FloatingWaste-I dataset. The results confirm YOLO-Float’s effectiveness, with an AP of 44.2% on the FloW-img dataset, surpassing the existing YOLOR, YOLOX and YOLOv7 by 3.2%, 2.7% and 3.4%, respectively.
Funder
Guangxi Science and Technology Department
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献