A Floating-Waste-Detection Method for Unmanned Surface Vehicle Based on Feature Fusion and Enhancement

Author:

Li Yong12ORCID,Wang Ruichen1,Gao Dongxu3,Liu Zhiyong1

Affiliation:

1. School of Electrical Engineering, Guangxi University, Nanning 530004, China

2. Key Laboratcry of AI and Information Processing (Hechi University), Education Department of Guangxi Zhuang Autonomous Region, Hechi 546300, China

3. School of Computing, University of Portsmouth, Portsmouth PO1 3HE, UK

Abstract

Unmanned surface vehicle (USV)-based floating-waste detection presents significant challenges. Due to the water surface’s high reflectivity, there are often light spots and reflections in images captured by USVs. Furthermore, floating waste often consists of numerous small objects that prove difficult to detect, posing a robustness challenge for object-detection networks. To address these issues, we introduce a new dataset collected by USV, FloatingWaste-I, which accounts for the effects of light in various weather conditions, including sunny, cloudy, rainy and nighttime scenarios. This dataset comprises two types of waste: bottles and cartons. We also propose the innovative floating-waste-detection network, YOLO-Float, which incorporates a low-level representation-enhancement module and an attentional-fusion module. The former boosts the network’s low-level representation capability while the latter fuses the highest- and lowest-resolution feature map to improve the model robustness. We evaluated our method by using both the public dataset FloW-img and our FloatingWaste-I dataset. The results confirm YOLO-Float’s effectiveness, with an AP of 44.2% on the FloW-img dataset, surpassing the existing YOLOR, YOLOX and YOLOv7 by 3.2%, 2.7% and 3.4%, respectively.

Funder

Guangxi Science and Technology Department

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3