An AUV-Assisted Data Gathering Scheme Based on Deep Reinforcement Learning for IoUT

Author:

Shi Wentao12,Tang Yongqi3,Jin Mingqi2,Jing Lianyou1ORCID

Affiliation:

1. Ocean Institute, Northwestern Polytechnical University, Taicang 215400, China

2. School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China

3. School of Information and Communication Engineering, Dalian University of Technology, Dalian 116024, China

Abstract

The Underwater Internet of Things (IoUT) shows significant future potential in enabling a smart ocean. Underwater sensor network (UWSN) is a major form of IoUT, but it faces the problem of reliable data collection. To address these issues, this paper considers the use of the autonomous underwater vehicles (AUV) as mobile collectors to build reliable collection systems, while the value of information (VoI) is used as the primary measure of information quality. This paper first builds a realistic model to characterize the behavior of sensor nodes and the AUV together with challenging environments. Then, improved deep reinforcement learning (DRL) is used to dynamically plan the AUV’s navigation route by jointly considering the location of nodes, the data value of nodes, and the status of the AUV to maximize the data collection efficiency of the AUV. The results of the simulation show the dynamic data collection scheme is superior to the traditional path planning scheme, which only considers the node location, and greatly improves the efficiency of AUV data collection.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3