High Value of Information Guided Data Enhancement for Heterogeneous Underwater Wireless Sensor Networks

Author:

Li Yun12,Bai Jie3,Chen Yan3ORCID,Lu Xingyu4,Jing Peiguang5ORCID

Affiliation:

1. School of Big Data and Artificial Intelligence, Guangxi University of Finance and Economics, Nanning 530003, China

2. Guangxi Big Data Analysis of Taxation Research Center of Engineering, Nanning 530003, China

3. School of Computer, Electronics and Information, Guangxi University, Nanning 530004, China

4. School of Science and Engineering, Xiangsihu College of Guangxi University for Nationalities, Nanning 530225, China

5. School of Electrical and Information Engineering, Tianjin University, Weijin Road, Tianjin 300072, China

Abstract

Ensuring the freshness of high Value of Information (VoI) data has a significant practice meaning for marine observations and emergencies. The traditional forward method with an auv-aid is used to ensure the freshness of high VoI data. However, the methods suffer from two issues: an insufficient high VoI data throughput and random forwarding for cluster heads (CHs). The AUV (Autonomous Underwater Vehicle) with limited energy cannot meet the demand for the random generation of high VoI data. Low VoI data packets compete with high VoI data packets for channels, resulting in an insufficient high VoI data throughput and a low freshness. To address the above issues, we propose the Data Access Channel Scheme based on High Value of Information (DACS-HVOI), which is suitable for prioritizing the transmission packets with a high VoI. First, according to the level of VoI, the packets are divided into K classes, and the packets that are collected and forwarded by the AUV are defined as the highest K+1 class. Second, based on prior knowledge in the network, a Markov chain algorithm-based method is employed to predict which nodes should preferentially use the channel, to avoid conflict between a low and high VoI. Third, based on the stochastic fluid theory, a multilevel queueing system for CHs are constructed to avoid random forwarding. Last, compared with state-of-art protocols, experimental simulation shows that the proposed scheme has a low latency and high network throughput, while improving the throughput of high-VoI packets and ensuring the priority transmission of high-VoI packets.

Funder

National Natural Science Foundation of China

Doctor start-up fund

Guangxi First-class Discipline Applied Economics Construction Project Fund

E-Government Governance Key Lab of Guangxi Universities Construction Project Fund

Guangxi Key Laboratory of Big Data in Finance and Economics

Nanning Scientific Research and Planned Development Project

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An AUV-Assisted Data Gathering Scheme Based on Deep Reinforcement Learning for IoUT;Journal of Marine Science and Engineering;2023-11-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3