Influence of Beach Slope on Morphological Changes and Sediment Transport under Irregular Waves

Author:

Dionísio António Sara1,van der Werf Jebbe12ORCID,Horstman Erik1ORCID,Cáceres Iván3,Alsina José3ORCID,van der Zanden Joep4ORCID,Hulscher Suzanne1ORCID

Affiliation:

1. Faculty of Engineering Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

2. Unit of Marine & Coastal Systems, Deltares, P.O. Box 177, 2600 MH Delft, The Netherlands

3. Laboratori d’Enginyria Marítima, Universitat Politècnica de Catalunya, C. Jordi Girona 1–3, 08034 Barcelona, Spain

4. Offshore Department, Maritime Research Institute Netherlands (MARIN), P.O. Box 28, 6700 AA Wageningen, The Netherlands

Abstract

This paper presents new data from large-scale wave flume experiments. It shows the beach profile evolution and sediment transport for two different bed slopes (1:15 and 1:25), and three irregular high-energy erosive wave conditions and one low-energy accretive wave condition. The bulk cross-shore net sediment transport was investigated for the total active profile and for the surf and swash zone separately. It is shown that the steep slope is morphologically more active than the gentle slope, with faster and more pronounced morphological changes and larger sediment transport rates. For both slopes, the total and surf zone net sediment transport were offshore-directed for erosive waves and onshore-directed for the accretive wave condition. However, the net swash zone transport for the erosive wave conditions was offshore-directed for the steep slope and onshore-directed for the gentle slope. The direction and magnitude of the total and surf zone sediment transport correlate well with the slope-corrected Dean criterion with increasing offshore-directed sediment transport (erosion) observed for increasing wave energy and bed slope. This relation does not hold for the swash zone sediment transport along the gentle slope, suggesting that swash zone sediment transport processes are not well captured when using a simple predictor such as the (modified) Dean number. Differences in sediment transport in the swash for the different slopes are likely influenced by differences in incoming wave energy, wave–swash interactions and the relative importance of long- and short-waves.

Funder

NWO-TTW research project

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3