Modelling of Granular Sediment Transport in Steady Flow over a Mobile Sloped Bed

Author:

Biegowski Jarosław1ORCID,Pietrzak Magdalena2ORCID,Radosz Iwona2,Kaczmarek Leszek M.2ORCID

Affiliation:

1. Institute of Hydro-Engineering, Polish Academy of Sciences, Kościerska 7, 80-328 Gdansk, Poland

2. Faculty of Civil Engineering, Environmental and Geodetic Sciences, Koszalin University of Technology, Śniadeckich 2, 75-453 Koszalin, Poland

Abstract

This paper introduces a three-layer system, proposing a comprehensive model of granular mixture transport over a mobile sloped bed in a steady flow. This system, consisting of the bottom, contact, and upper zones, provides complete, continuous sediment velocity and concentration vertical profiles. The aim of this study is to develop and experimentally verify this model for sediment transport over a bottom locally sloping in line with or opposite the direction of sediment flow. The model considers gravity’s effect on sediment transport in the bottom (dense) layer when the component of gravity parallel to the bottom acts together with shear stresses associated with water flow. This is a crucial factor often overlooked in previous studies. This effect causes an increase in velocity in the mobile sublayer of the dense layer and significantly affects the vertical distributions of velocity and concentration above this layer. The proposed shear variation due to the interaction between fractions and an intensive sediment mixing and sorting process over a mobile sloped bed adds to the novelty of our approach. The data sets used for the model’s validation cover various conditions, including slopes, grain diameters, densities, and grain mobility conditions, from incipient motion to a fully mobilized bed. This extensive validation process instils confidence in the theoretical description and its applicability to real-world scenarios in the design of hydraulic infrastructure, such as dams, barrages, bridges, and irrigation, and flood control systems.

Funder

Koszalin University of Technology, Faculty of Civil Engineering, Environmental and Geodetic Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3