Erosion and Sediment Transport Modeling: A Systematic Review

Author:

Andualem Tesfa Gebrie12ORCID,Hewa Guna A.1ORCID,Myers Baden R.1ORCID,Peters Stefan1ORCID,Boland John1ORCID

Affiliation:

1. UniSA-STEM, University of South Australia, Mawson Lakes, Adelaide, SA 5095, Australia

2. Department of Hydraulic and Water Resources Engineering, Debre Tabor University, Debre Tabor 272, Ethiopia

Abstract

Soil erosion and sediment transport have significant consequences, including decreased agricultural production, water quality degradation, and modification to stream channels. Understanding these processes and their interactions with contributing factors is crucial for assessing the environmental impacts of erosion. The primary objective of this review is to identify a suitable soil erosion and sediment transport model for catchment-scale application. The study considers various model selection processes, including model capability and the spatial and temporal domains for assessing spatiotemporal distributions. The review acknowledges the limitations, uncertainties, and unrealistic assumptions associated with soil erosion and sediment transport models. Models are usually developed with a particular objective, which demands an assessment of capabilities, spatial, and temporal applicability, and catchment-scale applicability. Distributed models are often preferred for catchment-scale applications, as they can adequately account for spatial variations in erosion potential and sediment yield, aiding in the evaluation of erosion-contributing elements and planning erosion control measures. Based on the findings of this study, the authors encourage utilizing models (such as Soil and Water Assessment Tool (SWAT) or Automated Geospatial Watershed Assessment Tool (AGWA)) that can forecast net erosion as a function of sediment output for catchment erosion and sediment yield modeling. This review helps researchers and practitioners involved in erosion and sediment modeling by guiding the selection of an appropriate model type based on specific modeling purposes and basin scale. By choosing appropriate models, the accuracy and effectiveness of sediment yield estimation and erosion control measures can be improved.

Funder

Australian Government Research Training Program

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3