Estimation of Secondary Soil Properties by Fusion of Laboratory and On-Line Measured Vis–NIR Spectra

Author:

Abdul Munnaf MuhammadORCID,Nawar SaidORCID,Mouazen Abdul Mounem

Abstract

Visible and near infrared (vis–NIR) diffuse reflectance spectroscopy has made invaluable contributions to the accurate estimation of soil properties having direct and indirect spectral responses in NIR spectroscopy with measurements made in laboratory, in situ or using on-line (while the sensor is moving) platforms. Measurement accuracies vary with measurement type, for example, accuracy is higher for laboratory than on-line modes. On-line measurement accuracy deteriorates further for secondary (having indirect spectral response) soil properties. Therefore, the aim of this study is to improve on-line measurement accuracy of secondary properties by fusion of laboratory and on-line scanned spectra. Six arable fields were scanned using an on-line sensing platform coupled with a vis–NIR spectrophotometer (CompactSpec by Tec5 Technology for spectroscopy, Germany), with a spectral range of 305–1700 nm. A total of 138 soil samples were collected and used to develop five calibration models: (i) standard, using 100 laboratory scanned samples; (ii) hybrid-1, using 75 laboratory and 25 on-line samples; (iii) hybrid-2, using 50 laboratory and 50 on-line samples; (iv) hybrid-3, using 25 laboratory and 75 on-line samples, and (v) real-time using 100 on-line samples. Partial least squares regression (PLSR) models were developed for soil pH, available potassium (K), magnesium (Mg), calcium (Ca), and sodium (Na) and quality of models were validated using an independent prediction dataset (38 samples). Validation results showed that the standard models with laboratory scanned spectra provided poor to moderate accuracy for on-line prediction, and the hybrid-3 and real-time models provided the best prediction results, although hybrid-2 model with 50% on-line spectra provided equally good results for all properties except for pH and Na. These results suggest that either the real-time model with exclusively on-line spectra or the hybrid model with fusion up to 50% (except for pH and Na) and 75% on-line scanned spectra allows significant improvement of on-line prediction accuracy for secondary soil properties using vis–NIR spectroscopy.

Funder

Research Foundation - Flanders

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3