Modeling of Soil Cation Exchange Capacity Based on Chemometrics, Various Spectral Transformations, and Multivariate Approaches in Some Soils of Arid Zones

Author:

Mustafa Abdel-rahman A.1,Abdelsamie Elsayed A.2ORCID,Mohamed Elsayed Said23ORCID,Rebouh Nazih Y.3ORCID,Shokr Mohamed S.4ORCID

Affiliation:

1. Soil and Water Department, Faculty of Agriculture, Sohag University, Sohag 82524, Egypt

2. National Authority for Remote Sensing and Space Sciences, Cairo 11843, Egypt

3. Department of Environmental Management, Institute of Environmental Engineering, RUDN University, 6 Miklukho-Maklaya St., Moscow 117198, Russia

4. Soil and Water Department, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt

Abstract

Cation exchange capacity is a crucial metric for managing soil fertility and promoting agricultural sustainability. An alternative technique for the non-destructive assessment of important soil parameters is reflectance spectroscopy. The main focus of this paper is on how to analyze and predict the content of various soil cation exchange capacities (CEC) in arid conditions (Sohag governorate, Egypt) at a low cost using laboratory analysis of CEC, visible near-infrared and shortwave infrared (Vis-NIR) spectroscopy, partial least-squares regression (PLSR), and Ordinary Kriging (OK). Utilizing reflectance spectroscopy with a spectral resolution of 10 nm and laboratory studies with a spectral range of 350 to 2500 nm, 104 surface soil samples were collected to a depth of 30 cm in the Sohag governorate, Egypt (which is part of the dry region of North Africa), in order to accomplish this goal. The association between the spectroradiometer and CEC averaged values was modeled using PLSR in order to map the predicted value using Ordinary Kriging (OK). Thirty-one soil samples were selected for validation. The predictive validity of the cross-validated models was evaluated using the coefficient of determination (R2), root mean square error (RMSE), residual prediction deviation (RPD), and ratio of performance to interquartile distance (RPIQ). The results indicate that ten transformation methods yielded calibration models that met the study’s requirements, with R2 > 0.6, RPQ > 2.5, and RIQP > 4.05. For evaluating CEC in Vis-NIR spectra, the most efficient transformation and calibration model was the reciprocal of Log R transformation (R2 = 0.98, RMSE = 0.40, RPD = 6.99, and RIQP = 9.22). This implies that combining the reciprocal of Log R with PLSR yields the optimal model for predicting CEC values. The CEC values were best fitted by four models: spherical, exponential, Gaussian, and circular. The methodology used here does offer a “quick”, inexpensive tool that can be broadly and quickly used, and it can be readily implemented again in comparable conditions in arid regions.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3