A New Typhoon-Monitoring Method Using Precipitation Water Vapor

Author:

Zhao QingzhiORCID,Ma XiongweiORCID,Yao Wanqiang,Yao YibinORCID

Abstract

Some seasonal natural floods can be attributed to typhoons that bring a large amount of atmospheric water vapor, and variations in atmospheric water vapor can be reflected in the precipitable water vapor (PWV). Therefore, monitoring typhoons based on the anomalous variations of the PWV is the focus of this paper. The anomalous variations of ERA5(fifth-generation reanalysis dataset of the European Centre for Medium-range Weather Forecasting)-derived PWV with other atmospheric parameters related to typhoons, such as precipitation, pressure, and wind, were first analyzed during typhoon periods. After that, a typhoon-monitoring method with and without considering the typhoon’s acceleration was proposed according to the time of the maximum value of the PWV during the typhoon period in this paper. Corresponding experiments based on the measured and simulated data were performed to evaluate the proposed method. The experimental measurement of Typhoon Hato revealed that the velocity of the typhoon’s movement estimated by the proposed method was close to the observed value, and the maximum difference between the estimated and observed values was less than 3 km/h. A simulated experiment was also carried out in which the acceleration of the typhoon’s movement was also considered. The simulated results verified the reliability and feasibility of the proposed method. The estimated velocity and acceleration of the typhoon’s movement were almost equal to the true values under the cases of using different numbers of stations and selecting various typhoon locations. Such results obtained above indicate that the method proposed in this paper has a significant potential application value for typhoon monitoring.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference32 articles.

1. Topics 2000: Natural Catastrophes-the Current Position;Munich,1999

2. Review on global natural catastrophes in the 20th century;Wang;J. Nat. Disasters,2000

3. Modeled Impact of Anthropogenic Warming on the Frequency of Intense Atlantic Hurricanes

4. Typhoon disaster in China: prediction, prevention, and mitigation

5. Climate Change 2014–Impacts, Adaptation and Vulnerability: Regional Aspects,2014

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3