Biomass Estimation for Semiarid Vegetation and Mine Rehabilitation Using Worldview-3 and Sentinel-1 SAR Imagery

Author:

Bao Nisha,Li Wenwen,Gu Xiaowei,Liu Yanhui

Abstract

The surface mining activities in grassland and rangeland zones directly affect the livestock production, forage quality, and regional grassland resources. Mine rehabilitation is necessary for accelerating the recovery of the grassland ecosystem. In this work, we investigate the integration of data obtained via a synthetic aperture radar (Sentinel-1 SAR) with data obtained by optical remote sensing (Worldview-3, WV-3) in order to monitor the conditions of a vegetation area rehabilitated after coal mining in North China. The above-ground biomass (AGB) is used as an indicator of the rehabilitated vegetation conditions and the success of mine rehabilitation. The wavelet principal component analysis is used for the fusion of the WV-3 and Sentinel-1 SAR images. Furthermore, a multiple linear regression model is applied based on the relationship between the remote sensing features and the AGB field measurements. Our results show that WV-3 enhanced vegetation indices (EVI), mean texture from band8 (near infrared band2, NIR2), the SAR vertical and horizon (VH) polarization, and band 8 (NIR2) from the fused image have higher correlation coefficient value with the field-measured AGB. The proposed AGB estimation model combining WV-3 and Sentinel 1A SAR imagery yields higher model accuracy (R2 = 0.79 and RMSE = 22.82 g/m2) compared to that obtained with any of the two datasets only. Besides improving AGB estimation, the proposed model can also reduce the uncertainty range by 7 g m−2 on average. These results demonstrate the potential of new multispectral high-resolution datasets, such as Sentinel-1 SAR and Worldview-3, in providing timely and accurate AGB estimation for mine rehabilitation planning and management.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3