Wave Height and Wave Period Derived from a Shipboard Coherent S-Band Wave Radar in the South China Sea

Author:

Chen ,Chen ,Zhao ,Wang

Abstract

To expand the scope of ocean wave observations, a shipboard coherent S-band wave radar system was developed recently. The radar directly measures the wave orbital velocity from the Doppler shift of the received radar signal. The sources of this Doppler shift are analyzed. After removing the Doppler shifts caused by the ocean current and platform, the radial velocities of water particles of the surface gravity waves are retrieved. Subsequently, the wavenumber spectrum can be obtained based on linear wave theory. Later, the significant wave height and wave periods (including mean wave period and peak wave period) can be calculated from the wavenumber spectrum. This radar provides a calibration-free way to measure wave parameters and is a novel underway coherent microwave wave radar. From 9 September to 11 September, 2018, an experiment involving radar-derived and buoy-measured wave measurements was conducted in the South China Sea. The Doppler spectra obtained when the ship was in the state of navigation or mooring indicated that the quality of the radar echo was fairly good. The significant wave heights and wave periods measured using the radar are compared with those obtained from the wave buoy. The correlation coefficients of wave heights and mean wave periods between these two instruments both exceed 0.9 while the root mean square differences are respectively less than 0.15 m and 0.25 s, regardless of the state of motion of the ship. These results indicate that this radar has the capability to accurately measure ocean wave heights and wave periods.

Funder

The National Key Research and Development Plan

The National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3