A Method of Extracting the SWH Based on a Constituted Wave Slope Feature Vector (WSFV) from X-Band Marine Radar Images

Author:

Wei Yanbo1ORCID,Wang Yujie1,He Chendi23,Song Huili3,Lu Zhizhong3ORCID,Wang Hui4

Affiliation:

1. College of Physics and Electronic Information, Luoyang Normal University, No. 6 Jiqing Road, Luoyang 471934, China

2. State Key Laboratory of Digital Multimedia Technology, Hisense Co., Ltd., No. 399 Songling Street, Qingdao 266000, China

3. College of Intelligent Systems Science and Engineering, Harbin Engineering University, No. 145 Nantong Street, Harbin 150001, China

4. School of Naval Architecture and Ocean Engineering, Guangzhou Maritime University, No. 101 Hongshan 3rd Road, Guangzhou 510725, China

Abstract

The shadow statistical method (SSM) used for extracting the significant wave height (SWH) from X-band marine radar images was further investigated because of its advantage of not requiring an external reference for calibration. Currently, a fixed shadow segmentation threshold is utilized to extract the SWH from a radar image based on the SSM. However, the retrieval accuracy of the SWH is not ideal for low wind speeds since the echo intensity of sea waves rapidly decays over distance. In order to solve this problem, an adaptive shadow threshold, which varies with echo intensity over distance and can accurately divide the radar image into shadow and nonshadow areas, is adopted to calculate the wave slope (WS) based on the texture feature of the edge image. Instead of using the averaged WS, the wave slope feature vector (WSFV) is constructed for retrieving the SWH since the illumination ratio and the calculated WS in the azimuth are different for shore-based radar images. In this paper, the SWH is calculated based on the constructed WSFV and classical support vector regression (SVR) technology. The collected 222 sets of X-band marine radar images with an SWH range of 1.0∼3.5 m and an average wind speed range of 5∼10 m/s were utilized to verify the performance of the proposed approach. The buoy record, which was deployed during the experiment, was used as the ground truth. For the proposed approach, the mean bias (BIAS) and the mean absolute error (MAE) were 0.03 m and 0.14 m when the ratio of the training set to the test set was 1:1. Compared to the traditional SSM, the correlation coefficient (CC) of the proposed approach increased by 0.27, and the root mean square error (RMSE) decreased by 0.28 m.

Funder

Natural Science Foundation of Henan Province

Key Scientific Research Project in Colleges and Universities of Henan Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3