Automatic Extraction and Detection of Characteristic Movement Patterns in Children with ADHD Based on a Convolutional Neural Network (CNN) and Acceleration Images

Author:

Muñoz-Organero Mario,Powell Lauren,Heller BenORCID,Harpin Val,Parker Jack

Abstract

Attention deficit and hyperactivity disorder (ADHD) is a neurodevelopmental disorder, which is characterized by inattention, hyperactivity and impulsive behaviors. In particular, children have difficulty keeping still exhibiting increased fine and gross motor activity. This paper focuses on analyzing the data obtained from two tri-axial accelerometers (one on the wrist of the dominant arm and the other on the ankle of the dominant leg) worn during school hours by a group of 22 children (11 children with ADHD and 11 paired controls). Five of the 11 ADHD diagnosed children were not on medication during the study. The children were not explicitly instructed to perform any particular activity but followed a normal session at school alternating classes of little or moderate physical activity with intermediate breaks of more prominent physical activity. The tri-axial acceleration signals were converted into 2D acceleration images and a Convolutional Neural Network (CNN) was trained to recognize the differences between non-medicated ADHD children and their paired controls. The results show that there were statistically significant differences in the way the two groups moved for the wrist accelerometer (t-test p-value <0.05). For the ankle accelerometer statistical significance was only achieved between data from the non-medicated children in the experimental group and the control group. Using a Convolutional Neural Network (CNN) to automatically extract embedded acceleration patterns and provide an objective measure to help in the diagnosis of ADHD, an accuracy of 0.875 for the wrist sensor and an accuracy of 0.9375 for the ankle sensor was achieved.

Funder

Agencia Estatal de Investigación

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference28 articles.

1. The Worldwide Prevalence of ADHD: A Systematic Review and Metaregression Analysis

2. ADHD prevalence estimates across three decades: an updated systematic review and meta-regression analysis

3. Attention-Deficit Hyperactivity Disorder—The Lancethttps://www.thelancet.com/journals/lancet/article/PIIS0140-6736

4. Diagnostic and Statistical Manual of Mental Disorders (DSM-5),2013

5. The ICD-10 Classification of Mental and Behavioural Disorders: Clinical Descriptions and Diagnostic Guidelineshttp://apps.who.int/iris/handle/10665/37958

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3